منابع مشابه
Positive-additive functional equations in non-Archimedean $C^*$-algebras
Hensel [K. Hensel, Deutsch. Math. Verein, {6} (1897), 83-88.] discovered the $p$-adic number as a number theoretical analogue of power series in complex analysis. Fix a prime number $p$. for any nonzero rational number $x$, there exists a unique integer $n_x inmathbb{Z}$ such that $x = frac{a}{b}p^{n_x}$, where $a$ and $b$ are integers not divisible by $p$. Then $|x...
متن کاملpositive-additive functional equations in non-archimedean $c^*$-algebras
hensel [k. hensel, deutsch. math. verein, {6} (1897), 83-88.] discovered the $p$-adic number as a number theoretical analogue of power series in complex analysis. fix a prime number $p$. for any nonzero rational number $x$, there exists a unique integer $n_x inmathbb{z}$ such that $x = frac{a}{b}p^{n_x}$, where $a$ and $b$ are integers not divisible by $p$. then $|x...
متن کاملNon-commutative Gröbner Bases for Commutative Algebras
An ideal I in the free associative algebra k〈X1, . . . ,Xn〉 over a field k is shown to have a finite Gröbner basis if the algebra defined by I is commutative; in characteristic 0 and generic coordinates the Gröbner basis may even be constructed by lifting a commutative Gröbner basis and adding commutators.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indagationes Mathematicae (Proceedings)
سال: 1973
ISSN: 1385-7258
DOI: 10.1016/1385-7258(73)90038-3